·临床研究·

不同参数的正中神经电刺激对意识障碍患者 促醒的影响*

方龙君1 冯 珍1,2

摘要

目的:研究不同参数的正中神经电刺激(MNES)对意识障碍患者促醒的影响。

方法:选取160例格拉斯哥昏迷量表(GCS)≤8分的意识障碍患者,随机分为对照组(n=40)、试验1组(n=40)、试验1组(n=40)、试验1组(n=40)和试验3组(n=40)。对照组使用常规促醒方案治疗;试验组在此基础上联合MNES。试验1组电刺激脉宽参数为50μs,试验2组为200μs,试验3组为300μs。治疗时间为3个月。治疗前后分别采用GCS评分、改良国际昏迷恢复量表(CRS-R)和诱发电位检查评估患者意识状态水平。

结果:治疗结束后,各组GCS评分、CRS-R评分、N20潜伏期、V波潜伏期均较治疗前显著性改善(P<0.05);试验各组优于对照组(P<0.05),试验3组优于试验1组和试验2组(P<0.05),试验1组和试验2组间无显著性差异(P>0.05)。

结论:正中神经电刺激脉宽参数为300µs时,能更好地促进意识障碍患者苏醒。

关键词 意识障碍;正中神经电刺激;康复;脉宽

中图分类号:R454.1 文献标识码:A 文章编号:1001-1242(2021)-03-0305-05

Effects of median nerve electrical stimulation with different parameters in patients with disorders of consciousness/FANG Longjun, FENG Zhen//Chinese Journal of Rehabilitation Medicine, 2021, 36(3): 305—309

Abstract

Objective: To investigate the effects of median nerve electrical stimulation(MNES) with different parameters on patients with disorders of consciousness.

Method: One hundred patients with disorders of consciousness were randomly divided into control group (n=40), experimental group 1 (n=40), experimental group 2 (n=40) and experimental group 3 (n=40). The control group received routine wake-promoting methods, and the experimental groups received median nerve electrical stimulation with 50μs, 100μs, 200μs, 300μs in sequence for 3 months. They were assessed with Glasgow coma scale (GCS), coma recovery scale-revised(CRS-R) and evoked potentials before and after treatment.

Result: There was significant difference in the scores of GCS, CRS-R and latency of N20 and V wave (P< 0.05), that the experimental groups were better than the control group (P<0.05). The experimental group 3 was better than the experimental groups 1 and 2(P<0.05), and no significant difference was found between the experimental groups 1 and 2(P>0.05).

Conclusion: MNES with 300µs could promote patients with disorder of consciousness to wake up optimally.

Author's address Dept of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, 330006

Key word consciousness disorders; median nerve electrical stimulation; rehabilitation; pulse duration

DOI:10.3969/j.issn.1001-1242.2021.03.009

^{*}基金项目:国家自然科学基金资助课题(81660382,81260295)

¹ 南昌大学第一附属医院康复医学科,江西省南昌市,330006; 2 通讯作者

第一作者简介:方龙君,男,硕士研究生; 收稿日期:2019-08-08

意识障碍是指个体缺乏对外界环境及自身状况的感知,意识障碍分为昏迷(coma)、植物状态(vegetative state, VS)和最小意识状态(minimally conscious state, MCS)等。近年来,随着急诊医学和重症医学的快速发展,重度颅脑损伤患者的救治率不断提高,存活的意识障碍患者数量持续增加,给家庭及社会造成了严重的负担[1]。

正中神经电刺激(median nerve electrical stimulation, MNES)是一种新型的神经调控促醒技术,研究表明 MNES 对于意识的改善具有显著疗效,可明显缩短苏醒进程,帮助患者快速觉醒^[2-4]。目前,MNES 的促醒疗效已得到较多国内外专家的认可。然而,由于现阶段国内外对于MNES临床应用时的参数设置(如频率、脉宽、通断比等)未制定规范化的统一标准,国内外也未见相关的研究报道,严重影响了其治疗效果。2017年石艳红等[5]发现 MNES 的频率设置与患者意识水平的恢复程度密切相关,50Hz时的促醒效果明显优于30Hz和100Hz。但脉宽参数对促醒疗效是否具有相同影响,未见报道。

因此,本试验拟围绕脉宽参数与MNES促醒疗效间的相关性展开研究,通过既往文献筛选出最为常用的3组脉宽参数(50μs、200μs、300μs),通过比较组间的疗效差异性,明确适宜的脉宽参数,以期为MNES促醒治疗技术的未来应用提供理论指导。

1 资料与方法

1.1 一般资料

纳人标准:①格拉斯哥昏迷量表(Glasgow coma scale, GCS)评分≤8分(气管切开患者言语功能 记为1分);②病程≥1个月者;③生命体征平稳者; ④患者家属获得知情权,并自愿签署知情同意书。 排除标准:①活动性脑出血者;②严重器官功能障碍 者;③既往有脑外伤、癫痫病史者;④孕妇;⑤既往有 听觉障碍病史者。脱落标准:未满疗程、中途死亡或 自动出院的患者。

本资料共搜集2016年1月-2018年12月南昌 大学第一附属医院康复医学科住院目符合上述纳入 标准的意识障碍患者 160 例,其中 coma 患者 14 例 (患者意识丧失,无随意运动,对各种的刺激失去正 常反应), VS 患者 118 例(患者认知功能丧失, 无意 识活动,但具有睡眠、觉醒周期,可自主性睁眼), MCS患者28例(患者有对环境的应急动作或情感反 应,可用是/否执行简单指令,具有视觉追踪或注视 功能),病因主要包括脑出血、脑梗死、脑外伤及缺氧 缺血性脑病等。治疗前行气管切开的患者150例, 治疗后139例。采用随机数字表法将160例患者分 为4组,每组40例,分别为对照组、试验1组、试验2 组和试验3组。干预期间15例患者因家属不配合或 未满疗程自动退出,重新纳入后予以补充。各组性 别、年龄、病程、病因、气管切开等一般资料情况比 较, 差异均无显著性意义(P>0.05)。见表 1。

本研究方案通过南昌大学、南昌大学第一附属 医院伦理委员会审核批准。

1.2 研究方法

1.2.1 治疗参数:对照组患者遵医嘱仅行常规促醒康复治疗,包括营养神经、改善脑代谢等药物治疗,以及针刺、感觉刺激、高压氧等综合康复治疗。试验组患者在接受常规促醒康复治疗同时接受MNES。MNES采用上海诺诚电气股份有限公司生产的MyoNet—AOW低频脉冲治疗仪。脉宽参数设置:试验1组50μs;试验2组200μs;试验3组300μs;波形选取方波,研究表明肌肉收缩时其反应性对方波最为敏感,极小的电流强度便可引起肌肉强烈的收缩⁶⁶。频率设置为50Hz,研究表明频率为50Hz时,肌肉可产生完全性强直收缩⁶⁶。将刺激电极置于右侧腕关节掌面腕横纹上2cm的正中神经点,参考电

表1 各组一般资料情况比较											
组别	例数 -	性别(例)		年龄	病程	病因(例)				气管切开[n(%)]	
组剂		男	女	$(\bar{x}\pm s, 岁)$	$(\bar{x}\pm s, d)$	脑出血	脑梗死	脑外伤	缺血缺氧脑病	治疗前	治疗后
对照组	40	30	10	55.05 ± 12.80	61.45 ± 14.68	24	3	10	3	37(92.5%)	34(85.0%)
试验1组	40	26	14	49.90 ± 11.33	57.05 ± 12.90	22	4	12	2	36(90.0%)	35(87.5%)
试验2组	40	24	16	52.15 ± 12.96	63.50 ± 13.97	18	6	12	4	38(95.0%)	34(85.0%)
试验3组	40	24	16	56.45 ± 10.31	58.50 ± 14.37	21	2	14	3	39(97.5%)	36(90.0%)
P值		0.8	24	0.275	0.611			0.872		>0.05	>0.05

极置于右侧大鱼际肌处。电流刺激强度以观察到患者手指可见轻微收缩即可,通断比为5s:5s,每日安排患者在白天接受持续4h的MNES治疗,每周7次,治疗时间为3个月。

1.2.2 观察指标:GCS评分:GCS因项目简明,操作简单,易于推广,是外伤和急救中心使用最广泛的意识评估工具,但也易受机体运动或感知觉功能受损影响,影响评定结果。该量表主要从睁眼反应、言语反应和肢体运动3方面对意识障碍患者进行评估,正常人满分15分,分数越低表示意识障碍程度越重,治疗前及治疗后各评估1次。

改良国际昏迷恢复量表(coma recovery scale-revised, CRS-R)评分: CRS-R主要用于区分意识障碍患者细微的行为差别,可用于监测意识的恢复情况,并对VS和MCS具有较好的区分作用^[8]。该量表主要通过听觉、视觉、运动、言语、交流和觉醒水平等方面对意识水平进行评估,得分范围为0—23分,分值越低表示患者意识水平越差,治疗前及治疗后各评估1次。

诱发电位评估:意识的产生主要与大脑皮质、丘脑和脑干网状上行系统等结构紧密相关,因此,神经电生理检查对判断意识障碍的原因和严重程度必不可少。诱发电位是神经电生理检查主要评估手段之一,具有客观性强、不受睡眠及麻醉影响等优点^⑤。诱发电位检查主要包括体感诱发电位、脑干听觉诱发电位和脑干听觉诱发电位是本次试验主要检测指标,通过观察测定的N20、I 波、Ⅲ波和V波潜伏期变化量评估意识障碍患者意识恢复情况。具体实践操作步骤均按照规范的标准要求执行,检测过程中左右两侧分别进行,每侧均重复2次,最后取其平均值。治疗前及治疗后各评估1次。

1.3 统计学分析

采用 SPSS21.0 进行数据统计分析,计数资料采用均数±标准差表示,组内比较时采用对配样本t检验。组间比较时,行方差齐性检验,若方差齐性,进行单因素方差分析;若方差不齐,进行 Krusakl-Wallis H 秩和检验。性别分布等分类资料采用 χ^2 检验。显著性差异水平为P<0.05。

2 结果

2.1 GCS评分结果

各组治疗前 GCS 评分无显著性差异(P>0.05)。治疗结束后,各组GCS评分均较治疗前明显提高(P<0.05),且试验各组优于对照组(P<0.05),试验3组优于试验1组和试验2组(P<0.05),试验1组和试验2组间无显著性差异(P>0.05)。见表2。

2.2 CRS-R评分结果

各组治疗前 CRS-R 评分无显著性差异(P>0.05)。治疗结束后,各组 CRS-R 评分均较治疗前提高(P<0.05),且试验各组优于对照组(P<0.05),试验3组优于试验1组和试验2组(P<0.05),试验1组和试验2组间无显著性差异(P>0.05)。见表2—3。

2.3 诱发电位检查结果

治疗结束后,双侧N20潜伏期、I 波潜伏期、Ⅲ 波潜伏期和V波潜伏期均较治疗前明显缩短。其中,试验组与对照组相比,N20潜伏期和V波潜伏期变化量具有显著性差异(P<0.05);试验3组与试验1组和试验2组相比,N20潜伏期和V波潜伏期变化量具有显著性差异(P<0.05);试验1组和试验2组相比,N20潜伏期和V波潜伏期变化量无显著性差异(P>0.05)。见表4。

3 讨论

意识障碍患者的复苏一直是国内外医学界亟待 解决的重要难题。近年来,随着神经调控技术的快 速发展,该技术在促醒治疗临床应用和基础研究方

表2 各组治疗前后GCS评分及CRS-R评分 (x±s)

组别		(GCS	CRS-R			
	组加	治疗前	治疗后	治疗前	治疗后		
	对照组	6.00 ± 1.49	6.60 ± 1.64	8.5±1.61	9.3±1.71		
	试验1组	6.30 ± 1.17	$7.60 \pm 1.28^{\odot}$	8.8 ± 1.47	$10.5 \pm 1.61^{\odot}$		
	试验2组	6.00 ± 1.56	$7.50\pm1.28^{\odot}$	8.7 ± 1.87	$10.5 \pm 1.79^{\odot}$		
	试验3组	6.00 ± 1.65	8.50±1.50 ^{©23}	9.1±1.90	11.7±2.20 ^{①②③}		

注:①:与对照组相比P<0.05;②:与试验1组相比P<0.05;③:与试验2组相比P<0.05。

表3 各组治疗前后意识状态等级改善状况

组别	例数	治疗前(例)			治疗后(例)				
组加		coma	VS	MCS	coma	VS	MCS	清醒	
对照组	40	4	30	6	1	13	26	0	
试验1组	40	2	28	10	0	18	21	1	
试验2组	40	3	31	6	1	22	15	2	
试验3组	40	5	29	6	0	13	21	6	
P值		>0.05				< 0.05			

2H DI	N	20	I	I波		Ⅲ波		V 波	
组别	左侧	右侧	左侧	右侧	左侧	右侧	左侧	右侧	
对照组	1.29 ± 0.70	1.24 ± 0.64	0.16 ± 0.16	0.19 ± 0.16	0.43 ± 0.27	0.41 ± 0.23	0.28 ± 0.15	0.30±0.15	
试验1组	$1.90\pm0.94^{\odot}$	$3.90{\pm}1.90^{\odot}$	0.16 ± 0.13	0.19 ± 0.14	0.39 ± 0.23	0.42 ± 0.23	$0.44{\pm}0.20^{\odot}$	$0.46{\pm}0.19^{\odot}$	
试验2组	$1.94{\pm}0.96^{\odot}$	$1.93{\pm}0.84^{\odot}$	0.16 ± 0.13	0.18 ± 0.13	0.41 ± 0.30	0.42 ± 0.24	$0.44{\pm}0.20^{\odot}$	$0.46{\pm}0.20^{\odot}$	
试验3组	$2.65 \pm 1.22^{\oplus 2/3}$	$2.68\pm1.17^{\oplus23}$	0.15 ± 0.14	0.19 ± 0.15	0.42 ± 0.28	0.41 ± 0.25	$0.59\pm0.28^{\odot23}$	$0.60\pm0.28^{\odot23}$	

面已逐渐取得了显著成果。神经调控技术包括正中 神经电刺激、深部脑刺激(deep brain stimulation, DBS)、经颅磁刺激(transcranial magnetic stimulation, TMS)等[10]。其中MNES因操作简单、无创、费 用低廉等特点,在临床上应用最为广泛。MNES采 用低频电流刺激患者手腕内侧正中神经分布区,产 生的神经冲动可经脊神经-颈髓-脑干-丘脑-皮 层功能区传导通路上传至中枢神经系统,引起神经 系统功能改变,进而发挥促醒作用。至20世纪90年 代日本学者 Yokoyama 等首次发现 MNES 可应用于 治疗意识障碍以来,相关报道正逐年增多。Cooper 等凹发现 MNES 可有效提高意识障碍患者觉醒程 度,缩短ICU住院时间,并促进言语功能的恢复。 Peri等[12]发现MNES组患者觉醒程度高达60%,对 照组为40%,刺激组功能独立性评定(functional independence measure, FIM)量表得分更高, 生存质量 改善更加显著。石艳红等[13]通过 meta 分析也发现 MNES可以提高患者GCS评分,改善脑血流量,对 促进患者清醒有较好效果。

MNES作为新型的神经调控促醒技术,其疗效已得到较多国内外专家的认可。本研究结果也显示,对照组及试验组患者意识水平均较治疗前改善(P<0.05),且试验组改善程度更加明显(P<0.05),表明常规促醒康复治疗联合 MNES 可使意识障碍患者收益更大,能更快的帮助患者苏醒,该结论与既往文献报道一致。然而,具体作用机制仍不明晰,现认为可能与以下方面有关:①增加神经感觉冲动传导,激活脑干网状上行系统,提高大脑皮质兴奋性,保持大脑觉醒状态[14]。②激活觉醒相关核团,如丘脑和下丘脑等,参与睡眠—觉醒周期调节,消除大脑皮层的抑制作用[15]。③提高大脑中动脉和椎基底动脉的脑血流速度,增加脑干血流灌注,改善脑组织缺氧状态[16-17]。④减少楔状核内神经型一氧化氮合成酶神

经元数量,减轻神经元毒性的发生,保护意识恢复的结构性功能[18]。

然而, MNES 的参数设置对促醒疗效的影响,国 内外相关文献报道较少。本试验通过为期三年的临 床数据对比研究发现,脉宽参数设置的不同对 MNES的促醒疗效具有显著性影响(P<0.05), 当脉 宽参数为300µs时其促醒疗效明显优于50µs和 200μs(P<0.05), 而当脉宽参数为50μs 和200μs 时促 醒疗效并无显著性差异(P>0.05)。造成差异性的原 因可能与不同的脉宽参数刺激后引起的神经元激活 或失活数目的差异性有关,进而影响了神经元的可 塑性变化。研究发现,脑血流量可随经皮神经电刺 激的脉宽参数变化而变化, 当脉宽参数在100us至 1000µs间变化时,脑血流量的响应峰值与脉宽参数 呈正相关,但随着脉宽参数达到500us,响应峰值逐 渐趋于平稳[19-21]。研究还发现, 当脉宽参数在100μs 至500µs间变化时,300µs导致的脑血流量增加更明 显,神经元激活程度更高,可塑性更强[22]。并且正中 神经复合动作电位符合电流强度-时间曲线特 性[23],脉宽参数越大,神经肌肉运动单位募集越多, 神经元传导速度越快,也可能导致了其疗效的差异 性。具体作用机制还有待进一步研究。

综上所述,本试验进一步验证了MNES改善意识障碍的显著疗效,并揭示了其促醒效果与脉宽参数设置有关,当脉宽参数为300μs时,促醒效果明显优于50μs和200μs。然而,由于本试验脉宽参数设置不足,当脉宽参数大于300μs时,其促醒疗效如何,还有待于进一步研究。

参考文献

- [1] Jiang J, Gao G, Feng J, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019,18(3):286—295.
- [2] Jin L, Lei W, Guoyi G, et al. Right median nerve electri-

- cal stimulation for acute traumatic coma patients[J]. Journal of Neurotrauma, 2015, 32(20):1423629725.
- [3] Liu JT, Wang CH, Chou IC, et al.Regaining consciousness for prolonged comatose patients with right median nerve stimulation[J]. Acta Neurochirurgica Supplement, 2003, 87 (87):11-14.
- [4] Wu X, Zhang C, Feng J, et al.Right median nerve electrical stimulation for acute traumatic coma (the Asia Coma Electrical Stimulation trial): study protocol for a randomised controlled trial[J]. Trials, 2017, 18(1):311.
- [5] 石艳红, 邵秀芹, 冯珍, 等. 正中神经电刺激对脑外伤后昏 迷促醒治疗的参数研究[J]. 中国康复理论与实践, 2017, 23 (2):207-210.
- [6] 乔志恒. 物理治疗学[M]. 北京:科学技术文献出版社, 2001.
- [7] Kasprowicz M, Burzynska M, Melcer T, et al.A comparison of the full outline of unresponsiveness (FOUR) score and Glasgow coma score (GCS) in predictive modelling in traumatic brain injury[J]. British Journal of Neurosurgery, 2016, 30(2):211-220.
- [8] Annen J, Filippini MM, Bonin E, et al. Diagnostic accuracy of the CRS-R index in patients with disorders of consciousness[J]. Brain Inj, 2019, 33(11):1409-1412.
- [9] 黄菲菲,冯珍.诱发电位在昏迷评估中的应用研究进展[J]. 中 国康复医学杂志, 2017, 32(4):482-486.
- [10] 冯珍. 神经电刺激昏迷促醒的研究现状及进展[J]. 中国康复 医学杂志, 2018, 33(3):255-258.
- [11] Cooper JB, Jane JA, Alves WM, et al. Right median nerve electrical stimulation to hasten awakening from coma [J]. Brain Injury, 1999, 13(4):261-267.
- [12] Peri CV, Shaffrey ME, Farace E, et al. Pilot study of electrical stimulation on median nerve in comatose severe brain injured patients: 3-month outcome[J]. Brain Injury, 2001, 15(10):903-910.
- [13] 石艳红, 邵秀芹, 冯珍, 等. 正中神经电刺激与常规疗法治 疗昏迷患者促醒疗效的 meta 分析[J]. 中国康复医学杂志, 2017, 32(11):1273—1277.
- [14] Cooper EB, Scherder EJA, Cooper JB. Electrical treatment of reduced consciousness; experience with coma and

- Alzheimer's disease[J]. Neuropsychological Rehabilitation, 2005, 15(3-4): 389-405.
- [15] Ritsuko H, Robert C, Peter A, et al. Very fast oscillations evoked by median nerve stimulation in the human thalamus and subthalamic nucleus[J]. Journal of Neurophysiology, 2004, 92(6):3171-3182.
- [16] Liu JT, Lee JK, Tyan YS, et al. Change in cerebral perfusion of patients with coma after treatment with right median nerve stimulation and hyperbaric oxygen[J]. Neuromodulation Technology at the Neural Interface, 2010, 11(4): 296-301.
- [17] Liu JT, Wang CH, Chou IC, et al. Regaining consciousness for prolonged comatose patients with right median nerve stimulation[J]. Acta Neurochirurgica Supplement, 2003, 87(87):11—14.
- [18] Angelo G, Floriana L, Marinella C, et al. Neuronal NOS expression in rat's cuneate nuclei following passive forelimb movements and median nerve stimulation[J]. Archives Italiennes De Biologie, 2011, 148(4):339-350.
- [19] Loerwald KW, Borland MS, Hays SA, et al. The interaction of pulse width and current intensity on the extent of cortical plasticity evoked by vagus nerve stimulation[J]. Brain Stimulation, 2018, 11(2):S1935861X-S17309634X.
- [20] Mu Q, Bohning DE, Nahas Z, et al. Acute vagus nerve stimulation using different pulse widths produces varying brain effects[J]. Biol Psychiatry, 2004, 55(8):816-825.
- [21] Masamoto K, Kim T, Fukuda M, et al. Relationship between neural, vascular, and BOLD signals in isofluraneanesthetized rat somatosensory cortex[J]. Cereb Cortex, 2007, 17(4):942-950.
- [22] Silva AC, Lee SP, Yang G, et al. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat[J]. J Cereb Blood Flow Metab, 1999, 19(8): 871-879
- [23] Grill WM, Mortimer JT. The effect of stimulus pulse duration on selectivity of neural stimulation[J]. IEEE Trans Biomed Eng, 1996, 43(2):161-166.