・临床研究・

上肢改良多方向伸展测试的信度与效度分析*

龚 翔'曾玲丽'王梦寰'陈建雄'沈莹莹'周蕴弢1,2

摘要

目的:进行上肢改良多方向伸展测试(modified multi-directional reach test, mMDRT)的内部一致性研究,并提供一种可能的数据处理方法,为mMDRT在平衡评估中的应用提供基础。

方法:应用mMDRT评估健康大学生青年平衡能力,将各方向数据进行内部一致性检验,并分析人体形态学偏倚的 影响,进行数据标准化。

结果:mMDRT内部一致性良好,各方向最大伸展距离均为高度相关。上肢综合长度与mMDRT各方向数据均高度 相关,将最大伸展距离进行标准化处理,转换为个体上肢综合长的倍数,可一定程度上消除人体形态学偏倚的影响。 结论:mMDRT内部一致性良好,在其进一步运用时需注意人体形态学偏倚造成的影响。

关键词 上肢改良多方向伸展测试;内部一致性;人体形态学偏倚;平衡评估

中图分类号:R493,R87 文献标识码:B 文章编号:1001-1242(2023)-06-0801-04

平衡能力被认为是在不改变支持面(base of support, BOS)的前提下,将人体质心(center of mass, COM)维持在稳定极限内的能力^[1]。平衡功能或者步态的异常被认为是预测未来跌倒的重要因素^[2],可通过功能测试法、量表法与仪器法等进行评估。由于功能测试法操作简单、容易实行,在临床上被广泛运用,较常使用的有功能性伸展测试(functional reach test, FRT)、下肢星状伸展测试(star excursion balance test, SEBT)等。适当的平衡功能评估可以确定姿势控制方面的损伤,对于设计最佳平衡训练方案以预防跌倒具有重要意义^[3-4]。

功能性伸展测试首先由 Duncan PW 等^[5]于 1990 年提 出,在临床上运用较多。但FRT 仅评估了前后方向的稳定极 限,无法对人体其他轴向的平衡能力进行测量^[6]。Newton RA等^[7]在此基础上将功能性伸展的方向增加为前、后、左、右 4个方向,发展为多方向伸展测试(multi-directional reach test, MDRT),将其与计时起立-行走测试(timed up & go test,TUGT)和Berg 平衡测试(Berg balance test,BBT)进行比 较分析,验证了其有效性和可靠性,并将测试场所设置在独 立环境中,避免了FRT测试时因靠近墙壁带来心理层面的感 知安全而造成影响。苏盼盼等^[8]在MDRT 基础上进行改良, 简化所需设备,并增加了4个斜向指标,进一步发展为改良 多方向伸展测试(modified multi-directional reach test, mMDRT),并在健康青年人群中进行了稳定性界限的研究。

DOI:10.3969/j.issn.1001-1242.2023.06.014

*基金项目:南京医科大学科技发展基金(KY121XJ20190039) 1 南京医科大学康复医学院,江苏省南京市,210029; 2 通讯作者 第一作者简介:龚翔,男,本科在读; 收稿日期:2021-02-25 目前为止,mMDRT仍缺乏信效度方面的研究,包括对各方向内部一致性的检验;此外,有关mMDRT是否存在人体形态学偏倚也尚未得到检验。基于此,本文进行了mMDRT内部一致性检验,针对可能的人体形态学偏倚提供了一种用于mMDRT数据处理方法,为mMDRT在平衡评估中的应用进一步提供基础。

1 资料与方法

1.1 研究对象

选择南京医科大学康复医学院学生32例,其中男性13 例,女性19例(表1)。纳入标准:①年龄19—23岁,体型勾称,BMI 18.5—23.9;②身体健康,无影响平衡功能的基础性疾病,如骨骼、肌肉、前庭、神经系统疾病等,上下肢关节活动度正常;③测试前48h内无进食酒精、服用药物等可能影响受试者平衡功能的情况;④根据爱丁堡利手问卷(the Edinburgh Handedness Inventory,EHI)⁶⁹和踢球试验^[10],确定受试者优势手和优势腿皆为右侧。

测量身高、体重、上肢长(肩峰外侧端到桡骨茎突)和上肢 综合长(肩峰外侧端到第三手指指尖)。

1.2 操作方法

1.2.1 场地设置:在安静无干扰的实验环境内,以受试者站 立地点为中心原点(脱去鞋子),于地面作正前、右前、正右、右 后、正后、左后、正左、左前8个方向的测量轴,每个方向角度

表1 受试者一般资料							
	例数	年龄(岁)	身高(m)	体重(kg)	BMI	上肢长(cm)	上肢综合长(cm)
男性	13	20.62±0.51	1.75 ± 0.07	67.54±8.88	22.00±1.88	53.88±2.82	73.49±4.07
女性	19	20.63±1.16	1.62 ± 5.31	52.89±4.52	20.07±1.29	51.47 ± 3.38	67.94±3.74

相隔45°。测试由3位测试员进行,2位负责测量数据,1位负责调整受试者姿势以及记录数据。

1.2.2 mMDRT操作方法:受试者双足对称站立,两足跟相距 8cm,外旋15°,足底压力中心与原点对应,在手指最远端悬吊 垂线,先测得在各方向的初始距离。要求为在保证平衡的前 提下,单上肢尽可能向不同方向伸展最大距离,并有控制地收 回,全过程全足底与地面保持接触。右上肢(优势侧)向正前、 右前、正右、右后共4个方向伸展,左上肢向正后、左后、正左、 左前共4个方向伸展。测试者记录最大伸展时垂线与地面测 量轴的接触点,接触点到原点的距离记为最大伸展距离。

实验开始前给予受试者各方向3次尝试机会,开始实验 后,上下肢的最大伸展各测试3次,计算平均值。当测试时 出现垫脚等足面离地、双足移动、伸展最大距离后不能有控 制收回肢体等平衡不能维持的情况需重测。

1.3 统计学分析

数据均采用 SPSS 22.0统计软件进行分析,采用内部一 致性的信度分析检验 mMDRT 数据的信度情况,用 Cronbach α系数表示。用 Pearson 相关性分析方法判断 mMDRT 各方向最大伸展距离与身高、上肢长度、上肢综合长度及各 方向最大伸展距离之间的相关程度。将 mMDRT 数据进行 标准化处理并用独立t检验比较性别在 mMDRT 原始数据与 标准化数据中的差异。

2 结果

2.1 mMDRT的内部一致性

对mMDRT在各方向上的最大伸展距离用Cronbach α 系数进行内部一致性检验。结果显示各方向Cronbach α系 数均大于0.9,总体Cronbach α为0.975。同时,各方向之间 数据均为高度相关(表2)。

2.2 mMDRT的数据标准化 mMDRT在各方向的最大伸展距离与身高、上肢长度(除

表2	mMDRT各方向最大伸展之间的相关性

	正前	右前	正右	右后	正后	左后	正左	左前
正前	1							
右前	0.967	1						
正右	0.881	0.890	1					
右后	0.766	0.794	0.870	1				
正后	0.656	0.678	0.709	0.841	1			
左后	0.738	0.762	0.843	0.935	0.913	1		
正左	0.862	0.886	0.927	0.857	0.794	0.907	1	
左前	0.895	0.911	0.887	0.814	0.738	0.830	0.941	1

802 www.rehabi.com.cn

正后方)与上肢综合长都有较高相关性,在后两者中,上肢综合长的相关性更为明显,在正前、右前、正右、右后、左后、正 左、左前方向P<0.01,正后方向P<0.05,可推得上肢综合长为影响mMDRT在各方向的最大伸展距离的重要影响因素(表3)。因此,为消除上肢综合长这一人体形态学指标对于mMDRT实验的影响,使得mMDRT的评估更加科学,参考SEBT的标准化流程^[11],对mMDRT的原始数据进行如下标准化操作,两种方法标准化后数据内部的一致性情况如表4所示。

表3	mMDRT最大伸展距离与身高、上肢长、
	上肢综合长的相关性

最大伸展	身高	上肢长	上肢综合长
正前	0.817	0.534	0.756
右前	0.813	0.531	0.759
正右	0.744	0.585	0.774
右后	0.648	0.431	0.700
正后	0.436	0.296	0.438
左后	0.637	0.422	0.647
正左	0.712	0.492	0.729
左前	0.743	0.474	0.704

注:上肢长度、上肢综合长两者和身高的Pearson相关性分别为0.643 (P<0.01)和0.871(P<0.01)。

表4 两种处理方法的内部一致性比较

是十仲屏	项目删除后的	克隆巴赫系数	校正后项目与总分相关性		
取八甲辰	方法(1)	方法(2)	方法(1)	方法(2)	
正前	0.948	0.688	0.768	0.463	
右前	0.946	0.862	0.808	0.317	
正右	0.944	0.673	0.847	0.615	
右后	0.945	0.686	0.826	0.500	
正后	0.950	0.634	0.823	0.648	
左后	0.943	0.658	0.839	0.706	
正左	0.940	0.679	0.905	0.557	
	0.942	0.666	0.855	0.561	

注:方法(1)总体 Cronbach α为0.951;方法(2)总体 Cronbach α为 0.715。

方法(1):

mMDRT各方向标准化数据 = 各方向上肢最大伸展距离 × 100% 受试者上肢综合长度

传统方法四为方法(2):

mMDRT各方向数据=各方向最大伸展距离-各方向初始距离 2.3 mMDRT各方向原始数据与标化数据的性别比较

据表5中数据可以看出,mMDRT的原始数据中,男女之间在各个方向几乎均存在显著差异。而在按照方法(1)将 mMDRT进行标准化后,消除了上肢综合长度对评价结果的 影响,男女之间的性别差异被消除了(P>0.05)。见图1。 表5 mMDRT距离的性别差异

 $(\bar{x}\pm s)$

			1/1 /1		(1=5)
	原始数据			标准化数据	
男	女	<i>P</i> 值	男	女	P值
107.77±6.03	100.53±4.63	0.001	146.75±6.16	$148.20{\pm}7.01$	0.551
110.02±6.61	102.93±4.44	0.001	149.81±7.10	151.72±6.35	0.433
104.97±6.38	96.25±3.39	0.000322	$142.94{\pm}6.95$	141.90 ± 5.50	0.638
100.35±5.67	92.22±4.11	0.000052	136.78±8.21	135.92 ± 5.48	0.724
93.37±10.70	86.39±4.32	0.042	127.31±14.58	127.33 ± 5.98	0.996
100.80±7.95	91.38±3.76	0.000065	137.36±10.09	134.70 ± 5.57	0.346
104.38±7.29	95.91±4.00	0.000199	142.15 ± 8.45	141.36 ± 5.28	0.745
109.27±6.92	100.39 ± 4.91	0.000189	$148.84{\pm}8.14$	147.99 ± 7.13	0.756
	<u>男</u> 107.77±6.03 110.02±6.61 104.97±6.38 100.35±5.67 93.37±10.70 100.80±7.95 104.38±7.29 109.27±6.92	原始数据 月 女 107.77±6.03 100.53±4.63 110.02±6.61 102.93±4.44 104.97±6.38 96.25±3.39 100.35±5.67 92.22±4.11 93.37±10.70 86.39±4.32 100.80±7.95 91.38±3.76 104.38±7.29 95.91±4.00 109.27±6.92 100.39±4.91	原始数据 男女P值 107.77±6.03 100.53±4.63 0.001 110.02±6.61 102.93±4.44 0.001 104.97±6.38 96.25±3.39 0.000322 100.35±5.67 92.22±4.11 0.00052 93.37±10.70 86.39±4.32 0.042 100.80±7.95 91.38±3.76 0.000065 104.38±7.29 95.91±4.00 0.000199 109.27±6.92 100.39±4.91 0.000189	原始数据 月 女 P值 男 107.77±6.03 100.53±4.63 0.001 146.75±6.16 110.02±6.61 102.93±4.44 0.001 149.81±7.10 104.97±6.38 96.25±3.39 0.000322 142.94±6.95 100.35±5.67 92.22±4.11 0.000052 136.78±8.21 93.37±10.70 86.39±4.32 0.042 127.31±14.58 100.80±7.95 91.38±3.76 0.000065 137.36±10.09 104.38±7.29 95.91±4.00 0.000199 142.15±8.45 109.27±6.92 100.39±4.91 0.000189 148.84±8.14	原始数据 标准化数据 男 女 P值 男 女 107.77±6.03 100.53±4.63 0.001 146.75±6.16 148.20±7.01 110.02±6.61 102.93±4.44 0.001 149.81±7.10 151.72±6.35 104.97±6.38 96.25±3.39 0.000322 142.94±6.95 141.90±5.50 100.35±5.67 92.22±4.11 0.000052 136.78±8.21 135.92±5.48 93.37±10.70 86.39±4.32 0.042 127.31±14.58 127.33±5.98 100.80±7.95 91.38±3.76 0.000065 137.36±10.09 134.70±5.57 104.38±7.29 95.91±4.00 0.000199 142.15±8.45 141.36±5.28 109.27±6.92 100.39±4.91 0.000189 148.84±8.14 147.99±7.13

图1 mMDRT 原始数据与方法(1)标准化数据的雷达图

3 讨论

3.1 mMDRT的内部一致性

mMDRT 在 MDRT 的基础上改进了测试指标与测试方 法^[8],但缺少可靠性与有效性的检验,本文在之前研究基础上 分析了 mMDRT 的内部一致性,各方向 Cronbach α系数均大 于0.9,可认为各方向之间的内部一致性良好。同时,本实验 对各方向之间的相关性进行比较研究,结果均呈现高度相 关,在一定程度上可以说明 mMDRT 的内部信度良好。

3.2 mMDRT与其他平衡评估方法的比较

SEBT 是一种与 mMDRT 操作方法相似的功能性动态平 衡评估方法,其信效度已在不同人群中得到较为广泛的验 证,被认为是一种可靠的动态平衡能力评估方法,对于预测 下肢受伤的风险,识别各种下肢疾病患者的动态平衡缺陷有 重要意义^[12]。

参考杨璨等⁽³⁾的描述,SEBT操作方法:受试者单腿支撑, 双手叉腰,支撑足的足底压力重心与原点重合,全足底与地面 保持接触,非支撑腿尽可能地向不同方向伸展,足尖轻触地面 上的测量轴,有控制地收回并且稳定站立,记录最大伸展时接 触点与原点的距离记为最大伸展距离。一侧腿支撑时,另一 侧腿分别向8个方向伸展,记录双腿各为支撑腿的数据。

与mMDRT相比,SEBT测试时需要单腿支撑的体位,对 受试者下肢的支撑水平、踝关节功能等提出了较高要求,且 测试会存在一定的摔倒风险;而mMDRT测试时体位为双足站立位,体位较为稳定、安全,更适合于平衡能力较差、有基础疾病的人群,例如功能下降的老年人等[14]。

mMDRT中的功能性伸展任务(functional reach task)与 传统的倾斜任务(leaning task)一样可以反映压力重心 (center of pressure,COP)的偏移,而伸展任务更能反映COP 偏移的功能性方面。Duncan PW等^[5]研究表明FRT结果表 明与COP密切相关,Pearson相关系数为0.71,线性回归分析 *R*²为0.51,且具有高度的可重复性。考虑到伸手够物是人们 在日常生活中普遍存在的功能需求,伸展应该被视作为一种 独立的功能性测量指标去反映临床测量的稳定极限,并非被 当作一种来测量COP移动的手段。同时,mMDRT各方向最 大伸展距离与上肢综合长度的高度相关也提示其在作业领 域的应用潜力。

3.3 数据标准化

本试验将mMDRT各方向数据与身高和上肢长及综合 长进行相关性分析,分析得出上肢综合长与各方向结果高度 相关。根据Gribble PA等^{min}对SEBT的数据处理办法,将各 方向伸展距离表示为受试者上肢综合长的倍数,可在一定程 度上消除人体形态学偏倚对于mMDRT数据的影响。同时, 本研究进行的数据标准化也验证了Duncan PW等^{mi}关于"性 别效应与年龄和身高影响效果相比,影响较小"这一论点。 与传统的处理方法(各方向最大伸展距离与初始距离的差值) 相比,方法(1)所得数据各方向均有很高的一致性,说明该测 试在不同方向上的评价角度是一致的,且各项得分与总分的 相关性更高。

3.4 误差及其改进

本实验在进行 mMDRT 实验时测试方向是从正前方开 始,顺时针进行测试,考虑到可能存在的相邻方向学习效应, 可采用避免相邻方向的随机顺序进行测试。Newton RA¹⁷建 议考虑到向后方向造成的恐惧带来的影响,向后方向通常不 作为第一个方向。随着受试者尝试次数的增加,其伸展距离 会在一定程度上增加,所以在实验正式开始前的尝试练习很 重要,确保学习效应的影响在正式测试中被削弱。与此同 时,受试者的代偿姿势(如踮起脚尖、晃动上肢等)应及时甄 别,避免带来对数据的影响。

4 结论

mMDRT 因其伸展任务相较于 COP 测量时的倾斜身体 任务更具作业意义,使得 mMDRT 测量的实用性更强。同 时,其操作便捷,无需昂贵设备,测试时稳定安全的体位对平 衡功能较差的人群更为友好,使得其被认为极具临床研究价 值,但其在不同人群中的信效度尚需研究,其与摔倒的相关 性及能否成为老年人跌倒的预测因子更值得关注。

参考文献

- Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice[M]. 4th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins,2012:641.
- [2] Ganz DA, Bao Y, Shekelle PG, et al. Will my patient fall?[J]. JAMA,2007,297(1):77-86.
- [3] Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?[J]. Age Ageing, 2006, 35(suppl 2): ii7—ii11.
- [4] Sibley KM, Beauchamp MK, Van Ooteghem K, et al. Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: a scoping review[J]. Arch Phys Med Rehabil, 2015,96(1):122-132.e29.
- [5] Duncan PW, Weiner DK, Chandler J, et al. Functional reach: a new clinical measure of balance[J]. J Gerontol,

(上接第800页)

Journal of Orthopaedic Research, 2010, 28(12):1539-1547.

- [39] 尹梦虹,李庆,王文君,等.不同时期膝骨关节炎的膝关节 6自由度步态变化[J].中国康复医学杂志,2018,33(11): 1341-1343.
- [40] Huang C, Chan PK, Chiu KY, et al. Knee joint loadings are related to tibial torsional alignments in people with radiographic medial knee osteoarthritis[J]. PLoS ONE, 2021, 16(7):1-11.
- [41] Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Finite element analysis of human knee joint in varus-valgus[J]. Clinical Biomechanics, 1997, 12(3):139–148.
- [42] Bennell KL, Bowles K, Wang Y, et al. Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis[J]. Annals of the Rheumatic Diseases, 2011, 70(10):1770–1774.
- [43] Marriott KA, Birmingham TB, Leitch KM, et al. Strong independent associations between gait biomechanics and pain in patients with knee osteoarthritis[J]. Journal of Biomechanics, 2019, 94:123—129.
- [44] Miyazaki T, Wada M, Kawahara H, et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis[J]. Annals of the Rheumatic Diseases, 2002, 61(7):617–622.

[45] Hurwitz DE, Foucher KC, Sumner DR, et al. Hip mo-

1990,45(6):M192—M197.

- [6] Robinovitch SN,Cronin T.Perception of postural limits in elderly nursing home and day care participants[J]. J Gerontol A Biol Sci Med Sci,1999,54(3):B124–B130.discussion B131.
- [7] Newton RA. Validity of the multi-directional reach test: a practical measure for limits of stability in older adults[J]. J Gerontol A Biol Sci Med Sci,2001,56(4):M248-M252.
- [8] 苏盼盼,孟殿怀.健康青年人改良式多方向伸展测试的稳定性 界限研究[J].中国康复医学杂志,2017,32(6):686—688.
- [9] Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory[J]. Neuropsychologia, 1971,9(1):97–113.
- [10] van Melick N, Meddeler BM, Hoogeboom TJ, et al. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults[J]. PLoS One,2017,12(12):e0189876.
- [11] Gribble PA, Hertel J. Considerations for normalizing measures of the star excursion balance test[J]. Measurement in Physical Education and Exercise Science, 2003, 7(2):89–100.
- [12] Gribble PA, Hertel J, Plisky P. Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review[J]. J Athl Train, 2012, 47(3):339-357.
- [13] 杨璨,庄洁,王于领,等.星状伸展平衡测试在评估社区老年女 性动态平衡功能中的运用[J].中国康复医学杂志,2012,27 (10):917—922.
- [14] Tantisuwat A, Chamonchant D, Boonyong S. Multi-directional reach test: an investigation of the limits of stability of people aged between 20—79 years[J]. J Phys Ther Sci, 2014,26(6):877—880.

tion and moments during gait relate directly to proximal femoral bone mineral density in patients with hip osteoar-thritis[J]. Journal of Biomechanics, 1998, 31(10):919–925.

- [46] Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage[J]. Clinical Orthopaedics and Related Research, 1986(213):34-40.
- [47] Van Drongelen S, Braun S, Stief F, et al. Comparison of gait symmetry and joint moments in unilateral and bilateral hip osteoarthritis patients and healthy controls[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:756460.
- [48] Neumann DA. Biomechanical analysis of selected principles of hip joint protection[J]. Arthritis Care and Research, 1989, 2(4):146–155.
- [49] Ozgul B, Akalan NE, Kuchimov S, et al. Effects of unilateral backpack carriage on biomechanics of gait in adolescents: a kinematic analysis[J]. Acta Orthopaedica et Traumatologica Turcica, 2012, 46(4):269–274.
- [50] Gardner-Morse M, Badger G, Beynnon B, et al. Changes in in vitro compressive contact stress in the rat tibiofemoral joint with varus loading[J]. Journal of Biomechanics, 2013, 46(6):1216-1220.
- [51] Neumann DA. Hip abductor muscle activity in persons with a hip prosthesis while carrying loads in one hand[J]. Physical Therapy, 1996, 76(12):1320–1330.